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ABSTRACT 

Automated Production Systems (aPS) must be more adaptable to adapt to the range of goods because discrete manufacturing is 

typically small batch and customised; this makes the aPS more error-prone and complex. Strategies for autonomous recovery are 

needed to improve system performance and decrease downtime brought on by manual intervention. Parts of the control software 

that treat inevitable failures planned and implemented at design-time carry out automatic recovery. Instead, reputable artificial 

intelligence planners should produce recovery strategies automatically to reduce engineering effort and handle unforeseen 

shortcomings. As a result, this study suggests breaking down the functional control software into Control Primitives, which are 

then used to create generated strategies. The components needed to manually implement the state machines of the various aPS 

operating modes are the same Control Primitives. Therefore, no further engineering work is required to prepare recoverability 

during the application development phase. This study presents four methods for modelling and implementing PLCexecutable 

Control Primitives. 

INTRODUCTION 

More demands are made on the efficiency, 

adaptability, and complexity of manufacturing 

processes in modern industrial production [1]. Cyber-

Physical Production Systems are utilised to meet 

Industry 4.0 criteria and to adjust to growing 

production demands [2]. However, as a result of the 

system's increased complexity and need for flexibility, 

there is a greater chance of failures, and the kinds of 

failures are now more varied and unpredictable [3]. 

Extended downtime from failure recoveries needing 

manual intervention reduces efficiency. 

As a result, it is becoming more and more crucial to 

automatically generate recovery techniques without 

human intervention.  

It is suggested that artificial intelligence (AI) be used 

to address automated recovery issues as machine 

learning, deep learning, artificial intelligence (AI), and 

other fields are progressively applied to the 

manufacturing sector [4]. 

Automated production systems (aPS) control software 

is primarily created in compliance with IEC 61131-3, 

while IEC 61499, a more recent standard, has yet to 

gain any industrial traction [5]. Based on production 

aims and needs, current control software systems 
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establish strict, hierarchical control architectures [6], 

often containing an automatic operation that may 

include specified recovery methods. As a result, errors 

must be anticipated to prevent or recover from them 

[7], necessitating manual invention if faults arise out 

of the blue. On more sophisticated contemporary 

production systems, this conventional method 

becomes unfeasible. 

The control software initiates a sequence of process 

state transitions that enable the automatic functioning 

of an aPS. 

From a conceptual standpoint, a failure is conceptually 

equal to a transition whose anticipated state of affairs 

differs from its actual condition. On the other hand, a 

recovery strategy consists of several changes from the 

failure state to the desired state. 

AI planning can be used to automatically develop 

recovery strategies if all state transitions are realised 

by deterministic Control Primites (CP), which are 

defined by preconditions and postconditions (together 

referred to as a “contract” in the following [8]). As a 

result, several CPs are chosen, and the process is 

repeatedly brought to its desired condition through 

their contracts.  
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This automated strategy creation is complementary to 

a computerised operation manually programmed and 

created from the same pool of CPs. It is not ideal to 

rely solely on generated strategies since human 

intelligence and experience cannot optimise the 

process. Functional descriptions from customer needs 

cannot be verified as satisfied in programmed state 

machines. 

Furthermore, it can be challenging to implement 

process modifications based on factors like product 

type or operator input because created strategies do not 

include control flow modifiers (IF-THEN rules). 

Regenerating tactics repeatedly based on external 

inputs would cause delays and increase the computing 

load substantially. On the other hand, creating partial 

sequences for the automated procedure could reduce 

some of the programming effort. Therefore, the 

primary contribution of this article consists of four 

 different modelling ways to modularize the AI 

planning-capable discrete manufacturing control 

software into CPs and compose an automated 

operation manually programmed from the same CPs. 

REQUIREMENTS 

To enable the generation of recovery strategies, a 

model of the technical process must be constructed 

including the contracts of all available CPs and 

descriptions of the objects (technical resources, 

products, etc.) to which the contracts refer. Using the 

model, strategies in the form of CP sequences must be 

automatically generated based on problem 

descriptions, which consist of a specification of the 

failure (initial) state and expected (goal) states. 

Finally, this generated strategy needs to be executable 

by a Programmable Logic Controller (PLC). Details of 

the requirements are discussed below, and referenced 

in Fig.1. 

 

 

Fig. 1: Overview of the Failure Recovery Process 

Since this model serves to solve problems in the AI 

planning domain, the model must adhere to the syntax 

and semantics of the related planning languages (R1). 

To fulfill the requirements of discrete manufacturing 

systems, the production process is divided into 

separate CPs, which are realized using technical 

resources. In this control model, the Control 

Primitives are equivalent between the PLC and 

planning domain (R2), and form a discrete composed 

structure (R3), i.e. no classification and grading of the 

CPs is performed. Each CP defines a contract (R4), 

i.e., preconditions and postconditions, or the states in 

between the CP transitions the technical process, 

which is assumed as a finite-state machine. State items 

(R5) include state predicates and state functions, the 

permutations of which can be used to determine the 

state of the technical process. This includes sensor 

data, corresponding to measurable physical properties, 

but also abstract relations and state information. CP 

contracts refer to state items. Properties of discrete 

products are described by characteristic variables 

represented as object feature items (R6), which are 

also considered as status items. While the above 

concerns the domain description, planning problems 

define the current state and target state of the technical 

process. The problem should be a classical planning 

problem (R7), which means the planning domain 

should be fully observable, deterministic, static and 

with single agents [10]. To minimize the recovery 

time, the plans should be efficient, i.e., the resulting 

strategy should be optimized to take the shortest 

possible path to the target state. The final generated 

strategy needs to be executable by PLCs, which means 

the strategies should be transformable into executable 

control software (R8). If the control model satisfies the 

above requirements, the system can use the same CPs 

for manually programmed normal operation as for 

automatically generated failure recovery. 
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CONCEPT 

The concept proposed in this paper builds upon PDDL 

2.1 due to its large feature set and robust support by 

established AI planners. The following first describes 

the incorporation of AI planning in discrete 

manufacturing such that existing manually 

programmed operating modes can be ported to the 

proposed modularized reconfigurable control 

software. Second, approaches for the definition of 

domain models are presented for different types of use 

cases. 

A. Inclusion of AI Planning in Discrete 

Manufacturing  

The problem of planning and scheduling aPS for 

discrete manufacturing is classified and discussed in 

[27]. Based on that work, this paper focuses on how to 

build domain models when failure recovery is 

considered. Thereby, the production process is divided 

into individual CPs corresponding to PDDL actions. 

The interaction of the PDDL planner with the PLC in 

case of a failure is shown in Fig.1. On the PLC, each 

CP executes a generalized state machine as shown on 

the left of Fig. 1, that every CP implementation 

inherits from a base class in the object-oriented 

application. Thereby, after initialization, the CP first 

awaits the fulfilment of its precondition, then executes 

its defined behavior to change the process state, and 

finally awaits the fulfillment of its postcondition. If 

precondition or postcondition are not fulfilled within a 

defined timeout, a problem file is generated to request 

a recovery. Thereby, the initial state is the current 

process state recorded by the machine’s sensors and 

the PLC’s state tracking. The goal state may be the 

failed precondition or postcondition (details in IV-

A.2). If a suitable recovery strategy can be found, it is 

transmitted back to the PLC and executed. Otherwise, 

the machine starts shutting down. The CP’s contract 

(precondition and postcondition) and timeout are 

abstract properties of the base class to be overwritten 

by the inheriting CP implementations. Similarly, the 

Execute method implementing the actual behavior is 

abstract and must be overwritten.  

1) Definition of Control Primitives: The CPs to realize 

both the automatic operation and the recovery plans 

are characterized by their contracts and formalized as 

PDDL actions. Whereas PDDL actions describe a CP’s 

dependence and impact on the technical process, the 

PLC side actually implements the described behavior. 

An applicable construction method is mentioned in 

[31]. The number of states increases exponentially as 

the number of state items increases. One or more CPs 

may execute simultaneously if their preconditions are 

satisfied. When the initial state, target state, and 

domain are given, it is possible to generate a sequence 

from a limited combination of CPs. Since the CP is 

determined only conceptually in PDDL, its actual 

effect must be determined using sensor data. When 

building the model, the sensor feedback value must be 

distinguished from the effect of the CP as a separate 

predicate, representing the desired and actual value of 

the effect, respectively. 

2) Comparison of Automatic Operation Mode and 

Error 

Recovery Mode: To describe the technical process, 

expected states, unexpected states, and unreasonable 

states are differentiated. During automatic operation, 

the state of the aPS is transposed from the initial state, 

via CPs, through a series of expected states until it 

reaches the target state for one cycle. Errors during 

that operation lead to an unexpected state or an 

unreasonable state. In an unreasonable state, products 

or components violate their original purpose, like a 

product falling off a conveyor. A failure state may also 

be reasonable but unexpected if, e.g., a product should 

have been machined but is not. The recovery process 

can be divided into two types, forward recovery (the 

system is restored to a subsequent expected state) and 

backward recovery (the system is restored to a 

previous expected state, in which it can attempt the 

required functions again) [12]. Thus, if partial 

sequences of an automatic mode shall be generated, 

the target state is set as the final state. The target state 

for failure recovery from an unreasonable state is set 

as the pre-error state, characterized by the 

precondition; for recovery from an unexpected state 

the target can be the preerror state and final state, as 

summarized in Table I. 

 

TABLE I: Modelling of Different Scenarios 
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3) Definition of Object Types:  

Discrete manufacturing is defined as” the production 

of distinct items such as automobiles, appliances or 

computers” [32], and is characterized by the discrete 

character of products, making it possible to define 

products as objects in planning problems. The objects 

need to be discrete enumerable individuals. If the 

described items are continuous, they need to be 

defined as relations in the form of equations instead of 

objects. 

Discrete manufacturing includes objects for products, 

component parts, and components as parameters to 

distinguish different CPs and state items. On the PLC, 

the product is only partially observable, and the status 

of the product can only be confirmed or inferred from 

the sensor data. However, in the PDDL model, each 

product is an individual with a separate name, and the 

status of the product is clear, which creates an 

information gap. One possible approach to make up 

the information difference lies in matching the 

appropriate PDDL model state under normal operation 

scenario with the state returned by the PLC model to 

complement the unobserved information. 

4) System Potential and Constraints:  

System potential describes the capacity of technical 

resources to impact the technical process. However, 

constraints, i.e., artificially imposed restrictions on 

technical resources or on products, limit this potential. 

Constraints can be classified into strong constraints, 

soft constraints, and variable requirements. Strong 

constraints are referred to as interlocks in automation 

technology and are defined in (:constraints) in the 

PDDL 3.0 syntax. Soft constraints, i.e. constraints that 

will not cause the plan to fail but will increase its cost, 

are defined in (:preferences). Variable requirements, 

most of which are restricted in the problem file, are 

only observed in automatic production mode and can 

be violated during failure recovery. 

B. Control Primitive Description Method 

The CPs in this concept fulfill operations classified as 

storage, transport, production, or a combination of 

transport and production [27]. Among these, transport 

operations, which connect processing steps in series, 

are focused on and their diversity is investigated in 

detail. The machine component that undertakes a 

transport operation is called a carrier. 

Transport modes can be classified according to the 

capacity of the carrier as summarized in Table II. 

Almost all carriers can be used for single-product 

transport, such as robotic arms, conveyors, etc. These 

carriers can be fixed-position, i.e., the deliverables can 

only appear in dispersed enumerable locations, such as 

suspension chains, or the opposite, like pipes. The 

mode of transport can be route-independent, i.e., 

ignoring the route from the origin to the destination 

and focusing only on reaching the target location, or 

conversely, the routes among the locations are fixed. 

However, only carriers such as belts, suspension 

chains, or pipes, where products can appear at multiple 

locations along one single transport route, are able to 

transport multiple products, which means they can 

transport products simultaneously. For example, the 

robotic arm transport method belongs to PM, only one 

or one batch of deliverables can be transported at a 

time, no transport routes need to be considered and the 

deliverables are held by the gripper (fixed carrying 

position). 

Similarly, the unmanned transport trolley is a fixed 

position route mode belongs to PRM, which differs 

from the PM in that the transport route needs to be 

taken into account. Suspension chains are SPRMs 

because they can transport multi products 

simultaneously, and differ from SRMs (e.g. conveyor 

belts) in that the products are carried by fixed 

positions. How to build transport CPs for each of these 

transportation modes is discussed below. 

Location-oriented Modelling: This modelling 

approach is suitable for non-simultaneous transport 

modes, i.e.  PM or PRM, characterized by separately 

defined transport CPs for delivering the products to 

different target locations. Since each delivery is a 

separate CP, it is possible to set specialised contracts 

for each delivery. Production requirements of different 

products are represented universally in the domain 

file, rather than part of the goal in the problem file.  

 

TABLE II: Classification of transport modes 
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This modelling is compatible with the strongly 

constrained production requirements. For example, a 

robot can transport a product from A to B for 

processing and finally to location C, as shown in Fig. 

2 The transport operation can be represented by three 

CPs, corresponding to three locations. The advantage 

of specifying the requirements in the condition of the 

CPs is that the generated plan is safer and more 

efficient, because non-conforming solutions are 

stopped at the time the CP is triggered, not at the time 

the target is checked. This means that when a planner 

uses forward search, risky attempts or unnecessary 

loops are avoided compared to the Carrier-oriented 

modelling discussed below (there, requirements are 

specified in the goal). Thus, the strategy is repeatedly 

modified until the goal-check passes. Consider, e.g., 

the predicate product is processed being added to the 

condition of the CPs transport to C (not to the goal), 

the generated plan will not be A-C-A-B-C, instead 

avoiding product being transported unprocessed to 

location C. The disadvantage is that it limits the 

potential and loses some flexibility of the system, 

because production requirements can change 

according to production needs, while the CPs stay 

unchanged. 

2) Carrier-oriented Modelling: This Modelling is 

suitable for the PM transport mode, i.e., the carrier can 

move freely between the defined locations. The 

restrictions on transport are only relevant to the carrier 

and not to the location. The transport operation from 

the above example can be one CP move by robot, 

shown in Fig. 2. The advantages of this modelling are 

the increased flexibility of the CP definition and the 

simplicity of the model description. This modelling of 

transport CPs describes the potential of the device 

more closely, allowing production requirements to be 

described separately from the interlocks of the 

technical resource. The disadvantage is that, in 

contrast to the Location-oriented modelling, strongly 

restricted production requirements cannot be taken 

into account, because the difference between locations 

is singularly divided by the arrival of the carrier, while 

the difference arising from complex production 

requirements is not considered. 

3) Mapping-oriented Modelling: For this modelling, 

suited for PRM transport modes, the location is no 

longer undifferentiated but formalized as abstract 

objects characterized by predicates. Here, the 

connections are either unidirectional (A connect B) or 

bidirectional (A before B or A after B). The map is thus 

constituted, the transport routes of the carriers are 

fixed, and the movements of the carriers are no longer 

arbitrary. The carrier in the previous example becomes 

a fixed route carrier. If there is no connection between 

A and C, the product cannot directly move from A to 

C. There are continuous transport movements in the 

industry, such as SRM, which cannot be represented 

by a discrete model. When constructing such transport 

movements, it is possible to discretize the continuous 

movements by cutting the transport route into 

segmented routes connecting discrete points. The 

continuous operation is sliced into a sequence of 

multiple CPs for each unit of time movement. This 

approach reduces the problem of failure due to floating 

points in continuous computation and improves the 

possibility of generating strategies. 

 

Fig. 2: Examples of four transport Control Primitives 
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4) Multi-product Modelling: For SRM and SPRM, the 

simultaneous changes of multiple positions are related 

rather than independent. In order to achieve this 

simultaneous change of product positions, the CP 

should not focus on the product itself, but on the 

product’s position. The position of the product is not 

only defined as an attribute of the product but as an 

object. The position on the carrier is defined as a stand 

point, that is, a discrete point on which a product can 

stand. This belongs to the predicate of the product and 

can be declared in the domain file by the state item 

(product on stand point), initialized in the problem file 

and changed by manipulating CPs. The difference 

between SRM and SPRM is that the standing points in 

SRM are no longer discrete points, but a continuous 

area. In order to simplify the model, discrete stand 

points in the continuous areas could be defined, and no 

products can exist in the area outside the stand points. 

To summarize, the location-oriented modelling 

distinguishes each location in detail, and although the 

generated strategy is more efficient, it limits the 

capability and the flexibility of the system. The 

carrier-oriented modelling blurs the distinction 

between locations and differentiates them only by 

whether the carrier is reachable, which is closer to the 

device’s capabilities and simplifies the code. The 

mapping-oriented modelling defines the route 

separately to accommodate PRM requirements on a 

carrier-oriented basis. 

The multi-product transport modelling, on the other 

hand, fulfills the requirements for simultaneous 

transport of both SRM and SPRM. 

 

 

 

EVALUATION 

As an application example to evaluate the previously 

proposed control model, the bench-scale 

manufacturing system xPPU2 is used. The following 

subsection provides an introduction of the xPPU and 

the investigated application. In section V-B, 

experiments are carried out for three processes based 

on section IV-A.2. The generated strategies are 

transformed into IEC 61131-3 code and executed on 

the xPPU for verification. 

A. Application Example xPPU 

Multiple xPPU usage scenarios and the operational 

components involved are detailed in a technical report 

[9]. The xPPU, in the scenario investigated here, 

consists of five components, shown in Fig. 3. A stack 

is used to store the workpieces. At the bottom of the 

stack, there is a cylinder that pushes out one workpiece 

at a time. The crane can rotate in both directions and 

transport one workpieces by using the valve-

controlled gripper, one piece at a time. A Large Sorting 

Conveyor (LSC) is connected to three ramps, one at 

the end of the conveyor and two on the side. The stamp 

is used to simulate a machining step of the workpiece. 

The PickAlfa Conveyor (PAC) transports workpieces 

that leave the LSC via a separator. Other components 

of the demonstrator are not in use. Three types of 

workpieces are considered as products: white plastic, 

black plastic, and metal. One single workpiece is 

pushed out by each stack actuation to be picked up by 

the crane. Black workpieces are transported directly to 

the LSC, the others are transported to the stamp. When 

the stamp is finished, the crane can then pick the 

workpiece up and turn to the LSC. The LSC transports 

the workpieces to them assigned ramps. If a ramp is 

full, the remaining workpieces are transported to the 

discard ramp.  

 

Fig. 3: A schematic view of the xPPU 
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B. Experiments Performed with Discrete Control 

Models  

Based on the PDDL requirements deriving and their 

fulfilment by different planners, Optic3 is chosen. 

Planners that do not support temporal calculation were 

excluded as time requirements are essential for 

efficient manufacturing. Among planners which plan 

temporal domains the Partial-Order Planning Forward 

planners (POPF) belong to the most popular planners. 

Among POPF planners the Optic planner supports 

most of the required PDDL requirements. All 

performances mentioned in the remainder have been 

collected on a consumer-grade laptop computer, 

equipped with a 4-core, hyper threaded 1.8 GHz CPU 

and 16 GB RAM. The generated strategies of below 

use cases4 are visualized using the PDDL extension of 

VS Code developed by Jan Dolejsi5. 

CONCLUSION 

This paper presents a modelling and implementation 

approach for aPS to use AI planning for the automatic 

generation of failure recovery strategies in discrete 

manufacturing. The model is applicable for solving 

failure recovery problems, but currently only 

considers discrete manufacturing with a focus on 

transport operations. It is unlikely to be applicable to 

any non-discrete processes. 
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